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A Two-Level Model for Evidence Evaluation

ABSTRACT: A random effects model using two levels of hierarchical nesting has been applied to the calculation of a likelihood ratio as a
solution to the problem of comparison between two sets of replicated multivariate continuous observations where it is unknown whether the sets of
measurements shared a common origin. Replicate measurements from a population of such measurements allow the calculation of both within-
group and between-group variances/covariances. The within-group distribution has been modelled assuming a Normal distribution, and the be-
tween-group distribution has been modelled using a kernel density estimation procedure. A graphical method of estimating the dependency
structure among the variables has been used to reduce this highly multivariate problem to several problems of lower dimension. The approach was
tested using a database comprising measurements of eight major elements from each of four fragments from each of 200 glass objects and found to
perform well compared with previous approaches, achieving a 15.2% false-positive rate, and a 5.5% false-negative rate. The modelling was then
applied to two examples of casework in which glass found at the scene of the criminal activity has been compared with that found in association
with a suspect.
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Consider a crime in which there was a breakage of glass. Frag-
ments may remain at the location at which the offence took place.
These fragments will be referred to as control fragments as their
source is known. Other fragments from the same source may be
transferred to the clothes and footwear of the offender. A suspect
may be identified and, on subsequent examination, found to have
glass fragments upon their person. These will be referred to as
recovered fragments, as their source in not known. The purpose of
the analysis of the fragments in this case is the evaluation of the
evidence for comparison of the proposition that the glass associ-
ated with the suspect is from the same source as the fragments
from the crime scene with the proposition that the glass associated
with the suspect is not from the same source as the fragments from
the crime scene.

The recovery of glass fragments from the suspect is the first
stage of the examination of this kind of evidence. It is most fre-
quently performed by shaking and/or brushing the garment(s). The
debris collected is observed under an optical microscope and glass
fragments separated manually. Most of these fragments have a
linear dimension of o0.5 mm. Observation of morphological fea-
tures, such as thickness and color, seldom contain enough infor-
mation to deduce whether the fragments in question were derived
from the same source as fragments found at the crime scene.
Therefore, it is necessary to determine their physico-chemical
properties. The Glass Refractive Index Measurements (GRIM)
method is often used in the role, as are instrumental methods of
elemental assay (e.g., m-XRF, LA-ICP-MS, SEM-EDX). The
comparison between recovered and control glass fragments is
then made on the basis of the analytical results. The increasing
ability to collect and store data relevant for identification in a
forensic context has led to a corresponding increase in methods

for the numerical evaluation of evidence associated with particular
evidence types.

The comparison of two sets of glass fragments by numerical
methods requires careful attention to the following considerations:

1. the similarity of recovered glass fragment(s) to a control
sample;

2. the information about the rarity of the determined physico-
chemical characteristics (e.g., elemental concentrations) for
control and recovered samples in the relevant population;

3. the level of association between different characteristics where
more than one characteristic has been measured; and

4. possible sources of variation that will include:

(a) variation of measurements of characteristics within the con-
trol items,

(b) variation of measurements of characteristics within the re-
covered items, and

(c) variation of measurements of characteristics between control
and recovered items.

Commonly used significance tests, like the Student t-test for
univariate data, and Hotelling’s T2 for multivariate data (1,2), take
into account only information about within-source variation and
the similarity of the compared items. Thus, the tests provide an
answer to the question: are the compared samples similar on the
basis of their physico-chemical properties? The answer to the
question of interest from the forensic point of view, which is what
is the value of the evidence of these measurements in relation to
the propositions that the two samples of glass fragments did, or
did not, come from the same source?, requires knowledge about
the sources of variability and the rarity of the measured physico-
chemical properties in the relevant population. For instance, one
would expect refractive index (RI) values from different locations
on the same glass object to be very similar. However, equally
similar RI values could well be observed from different glass
items. Without a wider context, it is not possible to ascribe mean-
ing to the observed similarity. Therefore, inferences about the
source of glass fragments made purely on the basis of similarity of
measurements are incomplete. Information about the rarity of a
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determined RI value has to be taken into account (3–5). Intuition
suggests that the value of the evidence in support of the propos-
ition that the recovered glass fragments and the control sample
have a common origin is greater when the determined RI values
are similar and rare in the relevant population, than when the RI
values are equally similar but common in the same population.
This kind of population information and information about the
two sources of variability are taken into account in the two-level
model described below (6,7).

Method

Glass Analysis

One large piece of glass from each of 200 glass objects was
selected. Each of these 200 pieces was wrapped in a sheet of gray
paper and further fragmented. The fragments from each piece
were placed in a plastic Petri dish. Four glass fragments, of linear
dimension o0.5 mm with surfaces as smooth and flat as possible,
were selected for examination with the use of an SMXX Carl
Zeiss (Jena, Germany) optical microscope (�magnification 100).

The four selected glass fragments were placed on self-adhesive
carbon tabs on an aluminum stub and then carbon coated using an
SCD sputter (Bal-Tech, Balzers, Liechtenstein). The prepared stub
was mounted in the sample chamber of a scanning electron micro-
scope. Analysis of the elemental content of each glass fragment
was carried out using a scanning electron microscope (JSM-5800
Jeol, Tokyo, Japan), with an energy-dispersive X-ray spectrometer
(Link ISIS 300, Oxford Instruments Ltd., Witney, Oxfordshire,
U.K.).

Three replicate measurements were taken from different areas
on each of the four fragments, making 12 measurements from
each glass object, but only four independent measurements. The
four means of the measurements were used for the analysis. The
measurement conditions were accelerating voltages 20 kV, life
time 50 sec, magnification � 1000� � 2000, and the calibration
element was cobalt. The SEMQuant option (part of the software
LINK ISIS, Oxford Instruments Ltd.) was used in the process of
determining the percentage of particular elements in a fragment.
The option applied a ZAF correction procedure, which takes into
account corrections for the effects of difference in the atomic
number (Z), absorption (A), and X-ray fluorescence (F).

The selected analytical conditions allowed the determination of
all elements except Lithium (Li) and Boron (B). However, only
the concentrations of oxygen (O), sodium (Na), magnesium (Mg),
aluminum (Al), silicon (Si), potassium (K), calcium (Ca), and iron
(Fe) are considered further in this paper as glass is essentially a
silicon oxide with Na and/or Ca added to create a commonly pro-
duced glass, and potassium, magnesium, aluminum, and iron add-
ed to stabilize its structure and modify its physico-chemical
properties (e.g., light transmission properties).

Data

From the eight elements measured, seven variables were de-
rived by taking the log10 of each of the other elements normalized
to oxygen. The data on the eight original elements are what is
known as compositional data in that the sum is constrained to be
100%. Division of seven of the variables by the eighth removes
this constraint. The logarithmic transformation of the ratio pro-
vides a better approximation to normality for the within-group
distribution. The transformation also provides a statistic that is
independent, subject to sign, as to whether oxygen is the numer-
ator or the denominator. The normalization also effectively

removes stochastic fluctuations in instrumental measurement, and
is invariant to which element is used as the divisor. As all further
usage of these variables in this paper refers to log10 of the ratio of
the elemental concentration to O, then we shall denote log10(Na/O)
as Na0, log10(Al/O) as Al0, log10(Si/O) as Si0, and so on.

The two-level model requires the estimation from the back-
ground population of two variance/covariance matrices. The first
is the matrix of variances and covariances for measurements on
replicates within an object, and is denoted U. The second is the
variance/covariance matrix for measurements between objects and
is denoted C. The formulae for the estimation of these matrices are
given in Appendix A. For the data from the 200 glass objects, the
variance/covariance matrices are given in Tables 1 and 2.

Normal Assumptions

There is no evidence to indicate that the distribution of meas-
urements within an object for the two-level model, following the
above transformation, is anything other than multivariate normal,
and this is what has been assumed from prior knowledge of the
marginal distributions for these variables. It is not possible to test
this assumption when there are only four measurements within a
particular group. However, the same cannot be said of the be-
tween-object distributions. For this reason, a multivariate kernel
density approach has been adopted for modelling the between-
object distribution, and multivariate normal distributions for the
within-object distribution.

Dependence Structures

A criticism of the modelling of multivariate databases, such as
the glass database used in this study, is that there is a lack of

TABLE 1—Within-group variance–covariance matrix U ( � 103), for the data
from the 200 glass objects.

Na0 Mg0 Al0 Si0 K0 Ca0 Fe0

Na0 0.182 0.167 � 0.160 0.006 0.381 0.198 0.171
Mg0 43.94 � 0.626 0.537 � 0.573 � 0.389 2.21
Al0 29.34 0.291 2.32 0.299 � 0.104
Si0 1.048 2.82 1.68 0.588
K0 262.3 3.78 � 31.41
Ca0 12.84 2.96
Fe0 94.35

Only the upper right triangle of the matrix is given; the lower left triangle
is given by symmetry. The variances are the leading diagonal of this table,
and the covariances are in the off-diagonal positions. For example, var(Na0) 5
0.000182.

TABLE 2—Between-group variance–covariance matrix C, for the data from
the 200 glass objects.

Na0 Mg0 Al0 Si0 K0 Ca0 Fe0

Na0 0.0036 0.0354 � 0.0048 0.0002 0.0335 0.0387 0.0111
Mg0 1.5243 � 0.2258 � 0.0060 � 0.7537 0.6349 0.3780
Al0 0.9050 � 0.0028 0.6987 � 0.1517 � 0.3435
Si0 0.0014 0.0023 � 0.0024 0.0076
K0 2.2398 � 0.5031 � 0.2778
Ca0 0.8548 0.1692
Fe0 1.8682

Only the upper right triangle of the matrix is given; the lower left triangle
is given by symmetry. The variances are the leading diagonal of this table,
and the covariances are in the off-diagonal positions. For example, var(Na0) 5
0.0036.
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background data from which to estimate the parameters of the
assumed distributions such as means, variances, and covariances.
For example, when glass samples are described by seven variables
then it is necessary to estimate, reliably, seven means, seven var-
iances, and 21 covariances both within objects, and between ob-
jects. This requires far more analytical data than are accessible in
many forensic databases, and observation of more variables,
which, in applied forensic contexts, may be required, would ne-
cessitate the estimation of an exponentially larger number of
means, variances, and covariances.

In the example given here, the between-object variance/cova-
riance matrix is estimated from the means of the 200 cases for a
maximum of seven variables. The means of the measurements
within each object, and the within-object variance–covariance
matrix is estimated from the mean of the three replicate measure-
ments for each fragment. Thus, there are just four independent
replicated sets of readings from each of the 200 glass objects.

Many approaches to the problem of multidimensionality have
been proposed in forensic science. Often, it has been assumed that
the variables are independent in order to reduce the number of
parameters to be estimated (2). However, this assumption is sel-
dom warranted. An alternative approach is to use some form of
data reduction such as principal component analysis (3,4) but this
involves problems of interpretability for a legal audience, and the
loss of a certain amount of data that needs careful justification.

Calculation of a full model for the example under consideration
requires the estimation of the probability density function

f ðNa0;Mg0;Al0; Si0;K0;Ca0; Fe0Þ

under each of two propositions, Hp, the proposition that the glass
measurements from the control and recovered material come from
the same source, and Hd, the proposition that the measurements
from the control and recovered material come from different sour-
ces. These density estimates are then used to calculate the like-
lihood ratio (LR) (see Appendix A)

LR ¼ f ðNa0;Mg0;Al0; Si0;K0;Ca0; Fe0jHpÞ
f ðNa0;Mg0;Al0; Si0;K0;Ca0; Fe0jHdÞ

ð1Þ

Unfortunately, as discussed above, the calculation of a full
model is not practical as the database comprises only four inde-
pendent measurements of seven variables from each of 200 glass
objects. However, if the dependence structures of these data are
taken into account, the problem can be reduced from one seven-
dimensional problem to several problems in lower dimensions.
Graph theory (8) is used to factorize the joint density function into
the product of several density functions on lower dimensions. In a
graph, each variable is represented as a node. In Fig. 1, the nodes
are depicted as circles with the name of the variable within the
circle. Nodes in a graph may, or may not be, connected by lines
that are termed edges. The arrangement of nodes and edges rep-
resents the dependence structure within a graph. Variables (nodes)
that are directly associated are joined by a line (edge). Variables
that are conditionally independent, given the values of the other
variables, are not directly connected. The dependence structure
may be causal, in which case the causality may be represented by
the addition of arrows to the edges. The graph is then known as a
directed graph. Alternatively, the dependency model may not
imply causality. The graph is then known as an undirected graph.
As the relationships between the elemental concentrations in glass
are not directly causal, the graphs used here will be undirected.

The basis for the choice of edges is the partial correlation mat-
rix, or its equivalent, the rescaled inverse of the variance–cova-
riance matrix (8). Table 3 shows the partial correlation matrix for
the seven variables from the 200 glass objects calculated from the
between-object covariance matrix. Table 3 is obtained from Table
2 as follows: invert the matrix in Table 2. Scale the resultant
matrix so that the diagonal terms are 1, and the off-diagonal terms
are the correlation coefficients. Let aij be element from the ith row
and jth column. The scaling is then implemented by setting the
entry bij in the scaled matrix as

bij ¼ aij=
ffiffiffiffiffiffiffiffiffiffi
aiiajj
p

Thus, for i 5 j, bij 5 1. It can be shown (8) that the elements of
the scaled inverse correlation matrix are the negative partial cor-
relation coefficients of the corresponding elements given the rest.
The dependence structure between the variables can then be easily
interpreted by inspection.

The graph is taken to represent a statistical model known as a
graphical model. Subsets of variables, known as factors, are ob-
tained from the graph by considering those parts of the graph in
which each node is connected to each other node. For example, in
Fig. 1, the nodes in the subset {Al0, Fe0} are connected to each
other. The nodes in the subset {Fe0, K0} are not connected to each
other. A subset in which all the nodes are connected to each other
is known as a complete subgraph, and the corresponding subset of
variables known as a clique. Any given graphical model can be
characterized by the arrangement of its cliques.

The joint distribution f(Na0, Mg0, Al0, Si0, K0, Ca0, Fe0) was
modelled using an undirected decomposable graphical model se-
lected (9) using the covariance matrix C as a basis for the partial
correlation matrix. A decomposable model is one that can be fac-
torized in such a way that explicit formulae for the parameters
may be derived.

Many automated methods for model selection rely upon a
goodness-of-fit statistic, usually some deviance-based measure,
to make a decision as to whether a model composed of a number
of cliques adequately describes the full dataset. Deviance-based

Fe’ Al’ K’ Ca’ Mg’

Si’

Na’

FIG. 1—The decomposable undirected graphical model calculated from
Table 3.

TABLE 3—Partial correlation matrix for the seven variables based on the
variance–covariance matrix C for the two-level model.

Na0 Mg0 Al0 Si0 K0 Ca0 Fe0

Na0 1.000 0.139 0.193 0.262 � 0.221 0.598 0.022
Mg0 1.000 0.008 � 0.169 � 0.201 0.288 0.183
Al0 1.000 � 0.122 0.480 � 0.113 � 0.218
Si0 1.000 0.088 � 0.155 0.154
K0 1.000 0.006 0.062
Ca0 1.000 � 0.011
Fe0 1.000

Only the upper right triangle of the matrix is shown; the lower left triangle is
given by symmetry.

414 JOURNAL OF FORENSIC SCIENCES



statistics use an underlying assumption of normality. The method
given in this paper specifically does not assume between-object
normality; a deviance-based statistic is not relevant as a measure
of fit, and thus cannot be used as a criterion for model selection.

Instead, the model was selected by the sequential addition
of edges decided by inspection of the partial correlation matrix
(Table 3). First, the partial correlation of the largest magnitude
was selected. This was 0.598 between Ca0 and Na0, and an edge is
added between these two nodes. Then, the partial correlation of
the second largest magnitude, 0.480, was selected and an edge was
added joining the corresponding nodes, K0 and Al0, to the graph.
This process was repeated until all nodes were part of the model.
After the addition of each edge, the model was checked to ensure
that it was decomposable. Altogether, six edges were added, the
final one linking Fe0 to Al0. Further additions of edges produced
models that were not decomposable until so many edges were
added that a model that was close to saturation, in which each
node was connected to each other node, was obtained. Such mod-
els are not considered here.

The decomposable model is represented in Fig. 1, the cliques
forming it being

ðAl0; Fe0ÞðAl0;K0ÞðK0;Na0ÞðCa0;Na0ÞðCa0;Mg0ÞðNa0; Si0Þ

This model represents a minimal model that decomposes the
seven variables of the full dataset into six sets of two variables. It
is illustrated in Fig. 1.

Model Factorization

The factorization for an undirected decomposable graphical
model is given (10) as

f ðCijSiÞ ¼
f ðCiÞ
f ðSiÞ

ð2Þ

where Ci is the ith clique in the model, and Si is the set of all
separators for the ith clique calculated from a set chain of the
cliques for the model.

A set chain is a particular ordering of the cliques in the model
that guarantees the factorization of the model. To find a set chain,
the following algorithm may be followed:

1. Select a node arbitrarily from the model graph and denote this
as the lowest numbered node.

2. Number each remaining node in turn ordered by the number of
edges linking it to any other already numbered node; break ties
arbitrarily.

3. Assign a rank to each clique based upon the highest numbered
node in the clique; if two cliques share a highest numbered
node, then rank arbitrarily between the two nodes.

The assigned ordering is a set chain. There may be many such
set chains for a given graphical model; however, all will imply a
single factorization for that graph (8).

For example, from Fig. 1 the node Na0 can be assigned to 1. If
that is the case, then there is a choice of K0, Ca0 and Si0 for number
2, an arbitrary choice assigned 2 to Si0. There is no node linked to
both Na0 and Si0, and no other nodes are linked to Si0, so there is a
choice between K0and Ca0; K0 is arbitrarily assigned to 3. Both Al0

and Ca0 are connected to one already numbered node, so Al0 is
arbitrarily numbered 4. Both Fe0 and Ca0 are linked to already
numbered nodes, so 5 is arbitrarily assigned to Fe0. Ca0 is the only

as yet unnumbered node connected to a numbered node, so is as-
signed to 6, leaving Mg0 to be assigned to 7.

From the graphical model, the clique (Ca0, Mg0) has the highest
numbered node Mg0, so the clique is given the same number as
Mg0, which is 7. (Ca0, Na0) has the next highest numbered node
Ca0, and so has the number 6. (Al0, Fe0) has 5 as its highest num-
bered node Fe0. (Al0, K0) has the highest numbered node Al0, and
so has the number 4. The clique (K0, Na0) has the highest num-
bered node K0, and so is assigned to 3. The remaining clique (Na, Si)
is numbered 2 as Si0 is the highest numbered node, and has num-
ber 2. Putting these into numerical order, the set chain in the first
column of Table 4 is obtained.

Given the cliques for the model, and a suitable set chain, the
sets of separators for each clique can be calculated. In the example
in Table 4, the first clique in the set chain is (Na0, Si0); this is a
complete subgraph, and at the moment there are no other cliques
added to the graph, so there can be no separator sets. The next
clique in the set chain is (K0, Na0), and so is added to the model.
The intersection of elements between these two cliques is (Na0),
and so this becomes the first separator set. The running union of
the first two sets is now (Na0, Si0, K0). The third clique to be added
to the model is (Al0, K0). The intersection between this clique and
the running union is (K0), and this becomes the second separator
set. Al0is then added to the running union to make it (Na0, Si0, K0,
Al0). The fourth clique to be added is (Al0, Fe0). The intersection
between it and the running union is (Al0), which becomes the third
separator. Fe0 is now added to the running union, which becomes
(Na0, Si0, K0, Al0, Fe0). The clique (Ca0, Na0) is the fifth clique to
be added to the model. Its intersection with the running union is
(Na0), which becomes the fourth separator. Ca0 is now added to
the running union, which becomes (Na0, Si0, K0, Al0, Fe0, Ca0).
Finally, the clique (Ca0, Mg0) is added to the model, the intersec-
tion between it and the running union is (Ca0), and becomes the
fifth and final separator set for this model.

The above may be taken as terms for Eq. (2) and then the model
can be factorized as

f ðCjSÞ

¼ f ðNa0; Si0Þf ðK0;Na0Þf ðAl0;K0Þf ðAl0; Fe0Þf ðCa0;Na0Þf ðCa0;Mg0Þ
f ðNa0Þf ðK0Þf ðAl0Þf ðNa0Þf ðCa0Þ

Results

The formula for the LR for the comparison of control and re-
covered items is given in Appendix A. The generic notation is
given there and values particular to the example discussed in the
body of the text are given here.

TABLE 4—Cliques, separators, and clique ordering for the graphical model.

i Clique (Ci) Running Union (Ri) Separator Set (Si)

1 (Na0, Si0) (Na0, Si0) ;
2 (K0, Na0) (Na0, Si0, K0) (Na0)
3 (Al0, K0) (Na0, Si0, K0, Al0) (K0)
4 (Al0, Fe0) (Na0, Si0, K0, Al0, Fe0) (Al0)
5 (Ca0, Na0) (Na0, Si0, K0, Al0, Fe0, Ca0) (Na0)
6 (Ca0, Mg0) (Na0, Si0, K0, Al0, Fe0, Ca0, Mg0) (Ca0)

The clique ordering for those cliques suggested by the model is based upon
the algorithm featured in the text. The separator sets Si are composed of those
elements of each clique that also appear in the running union along the set
chain at position Ri� 1. The running union Ri is composed of the set of all
elements from each clique in the set up to and including clique Ci. ; denotes
the empty set.
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There are 200 (m 5 200) objects with seven (p 5 7) variables.
Each of four fragments from each object was measured three
times, giving four (n 5 4) independent replicate measurements
(using the three means of the values of the measurements from
each fragment) from each of the 200 glass objects. The variance–
covariance matrices U and C were calculated using the formulae
given in Appendix A.

The performance of the procedure was tested by evaluating the
LR for comparisons of measurements from control and recovered
fragments taken from the original dataset. LRs were calculated
using the dependence structures described above for comparisons
between each of the 200 glass objects.

The measurements chosen for the control and recovered meas-
urements y1,jk; j 5 1, . . ., nc; k 5 1, . . ., p and y2,jk; j 5 1, . . ., nr;
k 5 1, . . ., p, respectively, were taken from the glass data. The first
two replicated mean measurements, that is, the means of meas-
urements from fragments one and two, were selected for the
simulated control sample of measurements. The remainder, the
means of measurements for fragments three and four, were as-
signed to the recovered sample. Thus, the control sample and the

recovered sample each had two replicates, no measurement being
common to both.

Each simulated control sample was compared with each simu-
lated recovered sample of measurements. There were 200 instan-
ces where it was known that the two sets of measurements came
from the same source, and 19,900 instances where it was known
that the two sets of measurements came from different sources.
Hence, 20,100 LRs were calculated. For instances where the
measurements came from the same object, it is desirable for the
LR to be 41. For instances where the measurements came from
different objects, it is desirable for the LR to be o1. Summary
information for these LRs is given in Table 5.

Application to Casework

Case 1

An elderly woman was found on the floor in a room at her
home. It was determined that she had been killed by the use of a
knife. Many glass fragments were found around the victim’s body.
The morphological features and locations of these fragments at the
scene of the crime were such that it could safely be assumed that
they had originated from a glass panel in an interior door. It was
also assumed that this panel had been broken during the commis-
sion of the crime. Some of the fragments of glass found at the
scene of crime were collected and sent for examination at the In-
stitute of Forensic Research (IFR) for comparison purposes. Ten
glass fragments (with linear dimensions o0.2 mm) were selected
from these and analyzed by the SEM-EDX method. These 10
fragments will be referred to as the control material (nc 5 10).

Two suspects (identified as A and B) were arrested and articles
of their clothing, listed in the columns of Table 6, were taken for
examination. These articles included a jacket, a shirt, a sweater, a
pair of trousers, and a T-shirt. Also recovered was a dishcloth ly-
ing under some glass fragments. The articles were sent to IFR for
analysis. Debris from the clothing was collected in plastic Petri
dishes by brushing. Each article was brushed separately. A num-
ber of glass fragments (with linear dimensions o0.2 mm) from
each article were recovered during this procedure through the use
of an optical microscope (with �100 magnification). Their elem-
ental composition was determined by SEM-EDX methods using
the procedure described earlier. The raw data were then trans-
formed using a logarithmic transformation to base 10 as used for
the LR approach described in this paper, and a factorization based

TABLE 5—Percentage distributions for the likelihood ratios (LR) calculated
for all 200 items.

LR Different Same

�10� 6 72.58 2.0
10� 6–10� 5 2.50 0.0
10� 5–10� 4 2.25 1.0
10� 4–10� 3 2.16 0.5
10� 3–10� 2 2.15 0.5
10� 2–10� 1 1.49 0.5
10� 1–100 1.68 1.0
100–101 2.05 2.0
101–102 2.29 2.0
102–103 3.52 6.5
103–104 3.50 8.0
104–105 3.47 41.0
105–106 0.36 29.5
�106 0.01 5.5
false 1ve/� ve 15.20 5.5

There are 200 within-source (same) comparisons and 19,900 between-
source (different) comparisons. Any value in the denominator that equalled
zero was set to 10� 12. False-positive (between-source comparison giving a
value of LR 41) and false-negative (within-source comparison giving values
of LR o1) rates are given.

TABLE 6—Values of the likelihood ratio for fragments of glass found on various pieces of clothing recovered from the home of two suspects, A and B, and a
dishcloth from the crime scene.

LR Verbal Equivalent

Suspect A Suspect A

DishclothJacket Shirt Sweater Trousers T-Shirt

�100 Support for Hd 0 0 0 0 1� 0
100–101 Limited support Hp 0 0 0 0 0 0
101� 102 Moderate support Hp 0 0 0 0 0 0
102–103 Moderately strong support Hp 1 0 0 0 0 0
103–104 Strong support Hp 2 0 0 0 2 3
�104 Very strong support Hp 10 3 1 3 4 6
Total fragments 13 3 1 3 7 9

�LRo10� 12.
These LRs were calculated using the model from Fig. 1. A verbal interpretation is associated with certain intervals, based on the ideas of Evett et al. (11). The

prosecution (defense) proposition, Hp (Hd), is that the fragments of glass on the articles of clothing from the suspects, or dishcloth, as appropriate, were (were not)
from the same source as the control, the glass panel on the victim’s door.

LR, likelihood ratio.
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on the model described above was used for these data. The value
of the evidence in comparison with the control material was de-
termined. The prosecution proposition, Hp, was taken to be that
the fragments of glass on the articles of clothing from the suspects
were from the same source as the control material: the glass panel
on the victim’s door. The defense proposition, Hd, was taken to be
that the fragments of glass on the articles of clothing from the
suspects were not from the same source as the control material:
the glass panel on the victim’s door. Interval values for the LRs,
on a logarithmic scale, are given in Table 6. Note that each piece
of glass is treated as an individual group. The value of nr is taken
as one in each case and the LR evaluated for each piece of glass.
The overall value of the evidence of all the pieces of glass is then
the product of the LRs evaluated for each piece of glass. There is
an implicit assumption of independence among all the glass frag-
ments. The formation of groups of fragments, for which nr would
be 41, is an exercise for the forensic scientist and is discussed
elsewhere (5). The dependencies between measurements within
such groups are accounted for in the expression for the LR given
in Appendix A but cancel out between the numerator and denom-
inator and so do not appear in the final expression.

In addition, nine glass fragments obtained from the brushing of
a dishcloth found at the crime scene were analyzed by the SEM-
EDX and LR approach. The results from these are in the rightmost
column of Table 6. As the dishcloth was found lying under some
glass fragments that had the morphological features of the broken
glass panel from the interior door, it was thought that the frag-
ments from the dishcloth were derived from the glass panel from
the door. The values for the LR obtained for all of these fragments
were larger than one, and can be assumed to be true positives.

The proposal of this paper is that the elemental content of frag-
ments of glass can be analyzed by the SEM-EDX method and the
evidential value of the results of the analysis can be analyzed by
the LR method. The results obtained from the application of this
approach to the fragments of glass analyzed from the dishcloth
may be taken as confirmation that the approach is suitable for
forensic purposes.

Case 2

A shirt and one piece of glass (control object) with a blood stain
on it were delivered for examination. There were glass micro-
traces present on the shirt. Nine glass fragments were recovered
from debris from the shirt, and the elemental concentrations were
measured. Ten glass fragments were collected from the piece of
glass (nc 5 10), and again the elemental concentrations were
measured. The approach proposed in this paper was applied, cal-
culating values of the LRs for the nine fragments individually
(taking nr 5 1 in each case) for the propositions: HP—the frag-
ment came from the control object, and Hd—the fragment came
from some object other than the control object. The LRs (all
�10� 5) were

1:9; 2:2; 2:1; 3:4; 4:3; 1:1; 3:3; 1:5; 2:6

(For example, the expanded first result is 190,000.)
Thus, all provide very strong support (11), for the proposition

that the fragments found on the shirt came from the control object.

Discussion

A procedure has been described for the evaluation of evidence
of a multivariate nature at two levels. Multivariate data of this
nature have been considered difficult to interpret and the error

rates obtained by the procedure described provide encouragement
that it has much to offer forensic scientists interested in an ob-
jective evaluation of their evidence where the data requirements
can be met. Two examples have been given from casework to
illustrate the usefulness of the approach for forensic purposes. The
procedure described here has several advantages over existing
methods.

1. Independence among variables is not assumed.
2. Loss of information is restricted to that unaccounted for by the

graphical model.
3. It models distributions of between-group variability that are

not normal, thus giving greater flexibility in the contexts in
which it may be applicable.

4. It is able to model data with many more variables than can be
modelled using a full dependence model, and is able to do so
without making unrealistic assumptions, such as between-
group normality and complete independence.

The procedure is able to model the two levels of variation in-
herent in many data structures considered in forensic science. These
levels assess the variability between different items and the vari-
ability within items. The method can be adapted to situations where
more levels of variability may be a necessary feature of the data (7).

A consideration not addressed earlier is the selection of an op-
timal graphical model. Here, only one decomposable model,
which was not close to saturation, was found, so the question
has not arisen. However, in a complex system of related variables
it would be usual to find a limited set of such graphical models.
The number of graphical models possible for any system of nodes
is determined by the number of nodes. The minimal model is the
model in which there are no edges; this corresponds to independ-
ence among all nodes. The maximal model is the model in which
there exists an edge connecting each node to each other node; this
corresponds to full dependence. All other possible models are in-
termediate between these two extremes. Were a set of models
possible for these data, then considerations such as parsimony, and
the availability of data from which to estimate the joint probabil-
ities represented by the cliques may be factors in model choice.
However, other considerations may be relevant to different data-
sets, and model selection may be made by subjective choice in-
formed by background information drawn from the subject to
which the data relate.

Another consideration is that the procedure requires the exist-
ence of population data from which the models may be construct-
ed. These data exist for certain evidential types, such as glass, but
not for all other data types of forensic interest. For those types for
which the data do not exist, it is hoped that the models described
here will show to forensic scientists the benefit of an objective
evidence evaluation procedure that can be developed if such data
were collected. Hence, it is hoped that some incentive has been
provided for the collection of data to which these models can be
applied.

Table 5 gives the distribution of LRs for the comparison of each
of the set of 200 glass objects compared with each other; it also
gives a summary of false positives and false negatives. The de-
cision to call any individual a false negative or false positive has
depended here on whether that LR is calculated from observations
known to be from the same glass object, or from observations
known to be from different glass objects, and whether that LR is
41, or o1, respectively. This characterization is to some extent
missing the point of this analysis. The idea is not to say whether
some fragment is likely to have been derived from some glass
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object or not, but to make statements about to what extent, or how
powerfully, the observations, in this case of elemental concentra-
tions, lend support to the proposition that the fragment came from
the glass object in question, or to the proposition that the fragment
came from some other glass object from the relevant population of
glass objects. The LR does not provide a direct attribution of
source. It provides a measure of the strength of the evidence in
support of one or other of the propositions in the case. For in-
stance, one of the LRs from the T-shirt of suspect A in Case 1 was
o10� 12. A value such as this would be regarded as very strong
support that the particular fragment from which the observations
were made had come from some source other than the broken
window pane from the crime scene. However, this value, while
providing very strong support, may not be persuasive enough, one
way or the other, to affect the outcome of the case as a whole. The out-
come is dependent upon other evidence and court requirements.

There also has to be an awareness of the possibility of false
positives and false negatives. The existence of these is illustrated
in Table 5. If the column labelled ‘‘different’’ (for truly different
sources of the crime and recovered fragments) is examined, then
2.05% of LRs are in the 1–10 range and 2.29% are in the 10–100
range. LRs with these values given different sources offer support,
erroneously, to the proposition of a common source. LRs offer
support for a proposition but should not be used by an expert to
ascribe a common, or different, source to the control and recov-
ered evidence. These results of false positives and negatives em-
phasize the care that must be exercised with the analysis when
interpreting any data of forensic significance.

Acknowledgments

The authors acknowledge the assistance of Richard Gill and
Nuala Sheehan and two anonymous referees. The program MIM
(mixed interaction modelling) aided in model determination and
selection (http://www.hypergraph.dk/).

References

1. Koons RD, Buscaglia J. The forensic significance of glass composition
and refractive index measurements. J Forensic Sci 1999;44(3):496–503.

2. Koons RD, Buscaglia J. Interpretation of glass composition measure-
ments: the effects of match criteria on discrimination capability. J Forensic
Sci 2002;47(3):505–12.

3. Curran JM, Triggs CM, Almirall JR, Buckleton JS, Walsh KAJ. The in-
terpretation of elemental composition measurements from forensic glass
evidence: I. Sci Justice 1997;37(4):241–4.

4. Curran JM, Triggs CM, Almirall JR, Buckleton JS, Walsh KAJ. The in-
terpretation of elemental composition measurements from forensic glass
evidence: II. Sci Justice 1997;37(4):245–9.

5. Curran JM, Hicks TN, Buckleton JS. Forensic interpretation of glass ev-
idence. Boca Raton, FL: CRC Press, 2000.

6. Aitken CGG, Lucy D. Evaluation of trace evidence in the form of multi-
variate data. [published corrigendum appears Applied Statistics 2004;
53(4):665–666]. J Roy Stat Soc Ser C 2004;53(1):109–22.

7. Aitken CGG, Lucy D, Zadora G, Curran JM. Evaluation of trace evidence
for three-level multivariate data with the use of graphical models. Comput
Stat Data Anal 2006;50:2571–88.

8. Whittaker J. Graphical models in applied multivariate statistics. Chiches-
ter: John Wiley and Sons Inc., 1990.

9. Edwards D. Introduction to graphical modelling. Berlin: Springer, 2000.
10. Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on

graphical structures and their application to expert systems. J R Stat Soc
Ser B 1988;50(2):157–224.

11. Evett IW, Jackson G, Lambert JA, McCrossan S. The impact of the prin-
ciples of evidence interpretation on the structure and content of statement.
Sci Justice 2000;40:233–9.

12. Lindley DV. A problem in forensic science. Biometrika 1977;64:207–13.
13. Silverman BW. Density estimation for statistics and data analysis. Lon-

don: Chapman and Hall, 1986.

Appendix: A Two-Level Model for Evidence Evaluation with a

Kernel Density Estimate for the Between-Groups Distribution

Consider a class of m objects, or groups, which have p char-

acteristics, or variables, x, each of which is measured n times on a

continuous scale within the groups. Denote the index of m as i so

i 5 {1, 2, . . ., m}, that of n as j, so j 5 {1, 2, . . ., n}. There are

N 5 mn sets of measurements, and mnp measurements.

Suppose there are two sets: one of nc, one of nr measurements

on the p characteristics and a comparison between the two sets are

required. Let �y1be a vector of means of the nc measurements y1j;

j 5 1, . . ., nc from the first object and �y2 be a vector of means of

the nr measurements y2j; j 5 1, . . ., nr from the second object. The

first set is denoted as the control set, the set whose origin is

known. This could be a set recovered at the scene of a crime. The

second set is denoted the recovered set whose origin is unknown;

this could be a set found with some association with a suspect. The

two sets are indexed by l where l 5 {1, 2}. Note that it is a feature

of the method that the variability within the two sets y1j; j 5 1, . . .,

nc and y2j; j 5 1, . . ., nr does not form part of the final expression.

Each member of the class of objects x will have a vector of p

means from the n measurements, taken from that member. Denote

these as �xiði ¼ 1; . . .;mÞ. Similarly, denote each vector of p meas-

urements as xij so that �xi ¼
Pn

j¼1 xij=n.

If �Y1 is the random variable from which observations �y1 are

sampled, and �Y2 is the random variable from which observations

�y2 are sampled, then

�Y1

�Y2

� �
� N

m

m

� �
;S

� �

where

S ¼
S11 S12

S21 S22

� �

and

S11 ¼
U

nc

þ C; S12 ¼ C ¼ S21; S22 ¼
U

nr

þ C

U is the within-group variance, and is estimated as

U ¼ Sw

N � m
where Sw ¼

Xm

i¼1

Xn

j¼1

ðxij � �xiÞðxij � �xiÞT

It is assumed that this variance is constant from group to group.

C is the between-groups variance, and is estimated as

C ¼ S�

m� 1
� Sw

nðN � mÞ where S� ¼
Xm

i¼1

ð�xi � �xÞð�xi � �xÞT

Then

�Y1 � �Y2 � N 0;
U

nc

þ U

nr

� �

and

ðnc
�Y1 þ nr

�Y2Þ=ðnc þ nrÞ � N m;C þ U

nc þ nr

� �

and ð �Y1 � �Y2Þ and ðnc
�Y1 þ nr

�Y2Þ=ðnc þ nrÞ are independent with

unit Jacobian.
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Then Z
f ð�y1; �y2jmÞf ðmÞ dm

¼
Z

f ð�y1 � �y2jmÞf ððnc�y1 þ nr�y2Þ=ðnc þ nrÞjmÞf ðmÞ dm

This is the multivariate analogue of the univariate example in

Lindley (12).

The numerator is

ð2pÞ�p=2ð2pÞ�p=2 U

nc

þ U

nr

����
����
�1=2

ð2pÞ�p=2

C þ U

nc þ nr

����
����
�1=2

1

m
jh2Cj�1=2

ð2pÞp=2
C þ U

nc þ nr

� ��1

þðh2CÞ�1

�����
�����
�1=2

exp � 1

2
ð�y1 � �y2ÞT

U

nc

þ U

nr

� ��1

ð�y1 � �y2Þ
( )

Xm

i¼1

exp � 1

2
ð�y12 � �xiÞT C þ U

nc þ nr

� ���

þðh2CÞ
i�1

ð�y12 � �xiÞ
o

where y12, the overall mean of the control and recovered meas-

urements, is

y12 ¼
nc�y1 þ nr�y2

nc þ nr

This can be simplified slightly so that the numerator of the LR

is

1

m
ð2pÞ�p U

nc

þ U

nr

����
����
�1=2

C þ U

nc þ nr

����
����
�1=2

jh2Cj�1=2

ðC þ U

nc þ nr

Þ�1 þ ðh2CÞ�1

����
����
�1=2

exp � 1

2
ð�y1 � �y2ÞT

U

nc

þ U

nr

� ��1

ð�y1 � �y2Þ
( )

Xm

i¼1

exp � 1

2
ð�y12 � �xiÞT C þ U

nc þ nr

� ���

þðh2CÞ
i�1

ð�y12 � �xiÞ
o

The denominator of the LR is

Z
f ð�y1jmÞf ðmÞ dm

� �
�

Z
f ð�y2jmÞf ðmÞ dm

� �

where �Y1 � Nðm;C þ U=ncÞand �Y2 � Nðm;C þ U=nrÞ:
The first term in the denominator is

Z
f ð�y1jmÞf ðmÞ dm

¼ 1

m
ð2pÞ�p=2

C þ U

nc

����
����
�1=2

jh2Cj�1=2
C þ U

nc

� ��1

þðh2CÞ�1

�����
�����
�1=2

Xm

i¼1

exp � 1

2
ð�y1 � �xiÞT C þ U

nc

� �
þ ðh2CÞ

� ��1

ð�y1 � �xiÞ
( )

The second term in the denominator is

Z
f ð�y2jmÞf ðmÞ dm

¼ 1

m
ð2pÞ�p=2

C þ U

nr

����
����
�1=2

jh2Cj�1=2
C þ U

nr

� ��1

þðh2CÞ�1

�����
�����
�1=2

Xm

i¼1

exp � 1

2
ð�y2 � �xiÞT C þ U

nr

� �
þ ðh2CÞ

� ��1

ð�y2 � �xiÞ
( )

An optimal value, hopt, for the window smoothing parameter h

(13) for the kernel distribution is estimated as

h ¼ hopt ¼
4

2pþ 1

� � 1
pþ4 1

m
1

pþ4

For m 5 200, p 5 2, this equals 0.3984.
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